Random discretization of stationary continuous time processes

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Temporal Aggregation of Stationary and Non-stationary Continuous-Time Processes

We study the autocorrelation structure of aggregates from a continuous-time process. The underlying continuous-time process or some of its higher derivative is assumed to be a stationary continuous-time auto-regressive fractionally integrated moving-average (CARFIMA) process with Hurst parameter H. We derive closed-form expressions for the limiting autocorrelation function and the normalized sp...

متن کامل

On the Discretization of Continuous-Time Filters for Non-Stationary Stock and Flow Time Series

This paper discusses the discretization of continuous-time filters for application to discrete time series sampled at any fixed frequency. In this approach, the filter is first set up directly in continuous-time – since the filter is expressed over a continuous range of lags, we also refer to them as continuous-lag filters. The second step is to discretize the filter itself. This approach appli...

متن کامل

Random Sampling of Random Processes: Stationary Point Processes

This is the first of a series of papers treating randomly sampled random processes. Spectral analysis of the resulting samples presupposes knowledge of the statistics of 1 t~}, the random point process whose variates represent the sampling times. We introduce a class of s ta t ionary point processes, whose s ta t ionar i ty (as characterized by any of several equivalent criteria) leads to wide-...

متن کامل

On $L_1$-weak ergodicity of nonhomogeneous continuous-time Markov‎ ‎processes

‎In the present paper we investigate the $L_1$-weak ergodicity of‎ ‎nonhomogeneous continuous-time Markov processes with general state‎ ‎spaces‎. ‎We provide a necessary and sufficient condition for such‎ ‎processes to satisfy the $L_1$-weak ergodicity‎. ‎Moreover‎, ‎we apply‎ ‎the obtained results to establish $L_1$-weak ergodicity of quadratic‎ ‎stochastic processes‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Metrika

سال: 2020

ISSN: 0026-1335,1435-926X

DOI: 10.1007/s00184-020-00783-1